Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
उत्तर
We have `sin (90^@ - theta) = cos theta` and `cos(90^@ - theta) = sin theta` so
`sin 596@ + cos 56^@ = sin(90^@ - 31^@) + cos 90^@ (90^@ - 34^@)`
`= cos 31^@ + sin 34^@`
Thus the desired expression is `cos 31^@ + sin 34^@`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following :
cosec 31° − sec 59°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10