Advertisements
Advertisements
प्रश्न
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
उत्तर
Given A = 60° and B = 30°
LHS = cos(A – B)
= cos (60° – 30°)
= cos 30°
= `(sqrt3)/(2)`
RHS = cos A cos B + sin A sin B
= cos 60° cos 30° + sin 60° sin 30°
= `(1)/(2) (sqrt3)/(2) + (sqrt3)/(2) (1)/(2)`
= `(sqrt3)/(4) + (sqrt3)/(4)`
= `(sqrt3)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cosec2 60° - tan2 30°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
The value of 5 sin2 90° – 2 cos2 0° is ______.