Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
उत्तर
A = 30° and B = 60°
L.H.S.
= cos(A + B)
= cos(30° + 60°)
= cos90°
= 0
R.H.S.
= cosA cosB - sinA sinB
= cos30° x cos60° - sin30° x sin60°
= `sqrt(3)/(2) xx (1)/(2) - (1)/(2) xx sqrt(3)/(2)`
= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
⇒ cos(A + B) = cosA cosB - sinA sinB
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.