Advertisements
Advertisements
Question
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Solution
sec30° cosec60° + cos60° sin30°.
cos30° = `sqrt(3)/(2)`
⇒ sec30° = `(2)/sqrt(3)`
sin60° = `sqrt(3)/(2)`
⇒ cosec60° = `(2)/sqrt(3)`
cos60° = `(1)/(2) , sin30° = (1)/(2)`
sec30° cosec60° + cos60° sin30°
= `(2)/sqrt(3) xx (2)/sqrt(3) + (1)/(2) xx (1)/(2)`
= `(4)/(3) + (1)/(4)`
= `(16 + 3)/(12)`
= `(19)/(12)`.
APPEARS IN
RELATED QUESTIONS
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A +B) = 1(A -B) = 1, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10