English

Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°. - Mathematics

Advertisements
Advertisements

Question

Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.

Sum

Solution

sec30° cosec60° + cos60° sin30°.

cos30° = `sqrt(3)/(2)`

⇒ sec30° = `(2)/sqrt(3)`

sin60° = `sqrt(3)/(2)`

⇒ cosec60° = `(2)/sqrt(3)`

cos60° = `(1)/(2) , sin30° = (1)/(2)`

sec30° cosec60° + cos60° sin30°

= `(2)/sqrt(3) xx (2)/sqrt(3) + (1)/(2) xx (1)/(2)`

= `(4)/(3) + (1)/(4)`

= `(16 + 3)/(12)`

= `(19)/(12)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 1.02

RELATED QUESTIONS

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


find the value of: cos2 60° + sec2 30° + tan2 45°


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If sin(A +B) = 1(A -B) = 1, find A and B.


Verify the following equalities:

sin2 60° + cos2 60° = 1


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×