English

Without using tables, find the value of the following: 4 cot 2 30 ° + 1 sin 2 60 ° − cos 2 45 ° - Mathematics

Advertisements
Advertisements

Question

Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`

Sum

Solution

`(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`

= `(4)/(sqrt(3))^2 + 1/(sqrt3/2)^2 - (1/sqrt(2))^2`

= `(4)/(3) + (1)/(3/4) - (1)/(2)`

= `(4)/(3) + (4)/(3) - (1)/(2)`

= `(8 + 8 -3)/(6)`

= `(13)/(6)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 2.5

RELATED QUESTIONS

Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Prove that:
sin 60° = 2 sin 30° cos 30°


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of: tan 30° tan 60°


find the value of: cos2 60° + sin2 30°


find the value of: cosec2 60° - tan2 30°


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


Verify cos3A = 4cos3A – 3cosA, when A = 30°


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×