Advertisements
Advertisements
Question
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Solution
LHS = `((tan60°+ 1)/(tan 60° – 1))^2`
= `((sqrt3 +1)/(sqrt3 - 1))^2`
= `(sqrt3 +1)^2/(sqrt3 -1)^2`
= `((sqrt3)^2+(1)^2+2xxsqrt3xx1)/((sqrt3)^2+(1)^2-2xxsqrt3xx1)`
= `(3+1+2sqrt3)/(3+1-2sqrt3)`
= `(4 + 2sqrt3)/(4 -2sqrt3 )`
= `(2(2+sqrt3))/(2(2- sqrt3)`
= `(2+sqrt3)/(2-sqrt3)`
R.H.S
= `(1+ cos 30°) /(1- cos 30°)`
= `(1+sqrt3/2)/(1-sqrt3/2)`
= `((2 + sqrt3)/2)/((2 - sqrt3)/2)`
= `(2+sqrt3)/(2-sqrt3)`
L.H.S = R.H.S
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate cos 48° − sin 42°
Evaluate the following :
`cos 19^@/sin 71^@`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos y, then x + y = 45° ; write true of false
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
secθ . Cot θ= cosecθ ; write true or false
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`