English

Prove that: ( tan 60 ° + 1 tan 60 ° – 1 ) 2 = 1 + cos 30 ° 1 – cos 30 ° - Mathematics

Advertisements
Advertisements

Question

Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `

Sum

Solution

LHS = `((tan60°+ 1)/(tan 60° – 1))^2`

= `((sqrt3 +1)/(sqrt3 - 1))^2`

= `(sqrt3 +1)^2/(sqrt3 -1)^2`

= `((sqrt3)^2+(1)^2+2xxsqrt3xx1)/((sqrt3)^2+(1)^2-2xxsqrt3xx1)`

= `(3+1+2sqrt3)/(3+1-2sqrt3)`

= `(4 + 2sqrt3)/(4 -2sqrt3 )`

= `(2(2+sqrt3))/(2(2- sqrt3)`

= `(2+sqrt3)/(2-sqrt3)`

R.H.S

= `(1+ cos 30°) /(1- cos 30°)` 

= `(1+sqrt3/2)/(1-sqrt3/2)`

= `((2 + sqrt3)/2)/((2 - sqrt3)/2)`

= `(2+sqrt3)/(2-sqrt3)`

L.H.S = R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.5 | Page 291

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate cos 48° − sin 42°


Evaluate the following :

`cos 19^@/sin 71^@`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that

sin (70° + θ) − cos (20° − θ) = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If sin x = cos y, then x + y = 45° ; write true of false


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


secθ . Cot θ= cosecθ ; write true or false


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A +B) = 1(A -B) = 1, find A and B.


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×