English

If tan (A + B) = 3 and tan (A – B) = 13; 0° < A + B ≤ 90°; A > B, find A and B. - Mathematics

Advertisements
Advertisements

Question

If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.

Sum

Solution 1

tan (A + B) = `sqrt(3)` = tan 60° and tan (A – B) = `1/sqrt(3)` = tan 30°

A + B = 60°     ...(1)

A – B = 30°     ...(2)

2A = 90°

⇒ A = 45°

Adding (1) and (2)

A + B = 60°

A – B = 30°

Subtract equation (2) from (1)

A + B = 60°

A – B = 30°

2B = 30°

⇒ B = 15°

Note: sin(A + B) = sin A cos B + cos A sin B

sin(A + B) ≠ sin A + sin B

shaalaa.com

Solution 2

Here, tan (A – B) = `1/sqrt(3)`

⇒ tan (A – B) = tan 30°          ...[∵ tan 30° = `1/sqrt(3)`]

⇒ (A – B) = 30°           ...(i)

Also, tan (A + B) = `sqrt(3)`

⇒ tan (A + B) = tan 60°           ...[∵ tan 60° = `sqrt(3)`]

⇒ A + B = 60°                                 ...(ii)

Solving (i) and (ii), we get:

A = 45° and B = 15°

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.2 [Page 187]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.2 | Q 3 | Page 187
RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.2 | Q 34 | Page 43
RS Aggarwal Mathematics [English] Class 10
Chapter 6 T-Ratios of some particular angles
Exercises | Q 25

RELATED QUESTIONS

Evaluate cos 48° − sin 42°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


find the value of: sin 30° cos 30°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If sin x = cos y, then x + y = 45° ; write true of false


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

cos2 30°  - sin2 30° = cos 60°


secθ . Cot θ= cosecθ ; write true or false


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×