Advertisements
Advertisements
Question
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Options
cos 60°
sin 60°
tan 60°
sin 30°
Solution
`(2 tan 30°)/(1-tan^2 30°)` = tan 60°
Explanation:
`(2 tan 30°)/(1-tan^2 30°)`
= `(2(1/sqrt3))/(1-(1/sqrt3)^2)`
= `(2/sqrt3)/(1-1/3)`
= `(2/sqrt3)/(2/3)`
= `sqrt3`
Out of the given alternatives, only tan 60° = `sqrt3`
Hence, tan 60° is correct.
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : sec245° - tan245° = 1
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
If sin 30° = x and cos 60° = y, then x2 + y2 is
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.