Advertisements
Advertisements
Question
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Solution
Let A = 45° and B = 30°
Then,
sin(A - B) = sinA cosB - cosA sinB
⇒ sin45° - 30°) = sin45° cos30° - cos45° sin30°
⇒ sin15° = `(1)/sqrt(2) xx sqrt(3)/(2) - (1)/sqrt(2) xx (1)/sqrt(2)`
⇒ sin15° = `sqrt(3)/(2sqrt(2)) - (1)/(2sqrt(2)`
⇒ sin15° = `((sqrt(3) - 1))/(2sqrt(2)`
cos(A -B) = cosA cosB + sinA sinB
⇒ cos(45° - 30°) = cos45° cos30° + sin45° sin30°
⇒ cos15° = `(1)/sqrt(2) xx sqrt(3)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
⇒ cos15° = `sqrt(3)/(2sqrt(2)) + (1)/(2sqrt(2)`
⇒ cos15° = `((sqrt(3) + 1))/(2sqrt(2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
cos2 30° - sin2 30° = cos 60°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`