English

Evaluate the following: sin30°+ tan45°– cosec 60°sec30°+ cos60°+ cot45° - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`

Sum

Solution

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`

= `(1/2+1-2/sqrt3)/(2/sqrt3+1/2+1)`

= `((3/2-2/sqrt3)/(3/2+2/sqrt3))`

= `((3sqrt3  -  4)/(2sqrt3))/((4  +  3sqrt3)/(2sqrt3))`

= `(3sqrt3-4)/(3sqrt3+4)`

= `((3sqrt3-4)(3sqrt3-4))/((3sqrt3+4)(3sqrt3-4))`

= `((3sqrt3-4)^2)/((3sqrt3)^2 -(4)^2)`

= `(27+16-24sqrt3)/(27-16)`

= `(43-24sqrt3)/11`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.2 [Page 187]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.2 | Q 1.4 | Page 187

RELATED QUESTIONS

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


Prove that:

cos2 30°  - sin2 30° = cos 60°


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×