Advertisements
Advertisements
Question
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Solution
L.H.S: `(sqrt(3) + 1) (3 - cot 30^circ)`
= `(sqrt3 + 1)(3 - sqrt(3))` ...`[∵ cos 30^circ = sqrt(3)]`
= `(sqrt(3) + 1) sqrt(3) (sqrt(3) - 1)` ...`[∵ (3 - sqrt(3)) = sqrt(3) (sqrt(3) - 1)]`
= `((sqrt(3))^2 - 1) sqrt(3)` ...`[∵ (sqrt(3) + 1)(sqrt(3) - 1) = ((sqrt(3))^2 - 1)]`
= `(3 - 1) sqrt(3)`
= `2sqrt(3)`
Similarly solving R.H.S: tan3 60° – 2 sin 60°
Since, tan 60° = `sqrt(3)` and sin 60° = `sqrt(3)/2`,
We get,
`(sqrt(3))^3 - 2 * (sqrt(3)/2) = 3sqrt(3) - sqrt(3)`
= `2sqrt(3)`
Therefore, L.H.S = R.H.S
Hence, proved.
APPEARS IN
RELATED QUESTIONS
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If sin x = cos x and x is acute, state the value of x
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If sin(A +B) = 1(A -B) = 1, find A and B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If 2 sin 2θ = `sqrt(3)` then the value of θ is