Advertisements
Advertisements
Question
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Solution
We are asked to find the value of tan 20° tan 35° tan 45° tan 55° tan 70°
`= tan(90^@ - 70^@) tan(90^@ - 55^@) tan 45^@ tan 55^@ tan 70^@`
`= cot 70^@ cot 55^@ tan 45^@ tan 55^@ tan 70^@`
`= (tan 70^@ cot 70^@)(tan 55^@ cot 55^@) tan 45`
= 1 x 1 x 1
= 1
Proved
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate tan 35° tan 40° tan 50° tan 55°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
find the value of: cos2 60° + sin2 30°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Prove that : cos60° . cos30° - sin60° . sin30° = 0