Advertisements
Advertisements
प्रश्न
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
उत्तर
L.H.S: `(sqrt(3) + 1) (3 - cot 30^circ)`
= `(sqrt3 + 1)(3 - sqrt(3))` ...`[∵ cos 30^circ = sqrt(3)]`
= `(sqrt(3) + 1) sqrt(3) (sqrt(3) - 1)` ...`[∵ (3 - sqrt(3)) = sqrt(3) (sqrt(3) - 1)]`
= `((sqrt(3))^2 - 1) sqrt(3)` ...`[∵ (sqrt(3) + 1)(sqrt(3) - 1) = ((sqrt(3))^2 - 1)]`
= `(3 - 1) sqrt(3)`
= `2sqrt(3)`
Similarly solving R.H.S: tan3 60° – 2 sin 60°
Since, tan 60° = `sqrt(3)` and sin 60° = `sqrt(3)/2`,
We get,
`(sqrt(3))^3 - 2 * (sqrt(3)/2) = 3sqrt(3) - sqrt(3)`
= `2sqrt(3)`
Therefore, L.H.S = R.H.S
Hence, proved.
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate tan 35° tan 40° tan 50° tan 55°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
For any angle θ, state the value of: sin2 θ + cos2 θ
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.