मराठी

prove that: cos (2 x 30°) = 1 – tan 2 30 ° 1 + tan 2 30 ° - Mathematics

Advertisements
Advertisements

प्रश्न

prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`

बेरीज

उत्तर

RHS,

`(1 – tan^2 30°)/(1 +tan^2 30°) = (1–(1)/(3))/(1+(1)/(3)) = (1)/(2)`

LHS,

cos (2 x 30°) = `cos 60° = (1)/(2)`

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 4.2 | पृष्ठ २९१

संबंधित प्रश्‍न

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


find the value of: tan 30° tan 60°


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


If sin 30° = x and cos 60° = y, then x2 + y2 is


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×