Advertisements
Advertisements
प्रश्न
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
उत्तर
RHS,
`(1 – tan^2 30°)/(1 +tan^2 30°) = (1–(1)/(3))/(1+(1)/(3)) = (1)/(2)`
LHS,
cos (2 x 30°) = `cos 60° = (1)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
find the value of: tan 30° tan 60°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If sin 30° = x and cos 60° = y, then x2 + y2 is
If 2 sin 2θ = `sqrt(3)` then the value of θ is
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`