Advertisements
Advertisements
प्रश्न
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
उत्तर
sin x = cos y = sin (90° – y )
if x and y are acute angles,
x = 90° – y
⇒ x + y = 90
Hence x and y are complement angles
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that
sin (70° + θ) − cos (20° − θ) = 0
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: tan 30° tan 60°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
secθ . Cot θ= cosecθ ; write true or false
For any angle θ, state the value of: sin2 θ + cos2 θ
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.