Advertisements
Advertisements
प्रश्न
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
उत्तर
sin 90° = 1, cos 60° = `1/2`, cos 45° = `1/sqrt(2)`, sin 30° = `1/2`, cos 0° = 1
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
= `(1 + 1/2 + 1/sqrt(2)) xx (1/1 + 1 - 1/sqrt(2))`
= `((2sqrt(2) + sqrt(2) + 2)/(2sqrt(2))) xx ((sqrt(2) + 2sqrt(2) - 2)/(2sqrt(2)))`
= `((3sqrt(2) + 2)/(2sqrt(2))) xx ((3sqrt(2) - 2)/(2sqrt(2)))`
= `((3sqrt(2))^2 - (2)^2)/8`
= `(9(2) - 4)/8`
= `(18 - 4)/8`
= `14/8`
= `7/4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
cosec 31° − sec 59°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to