Advertisements
Advertisements
Question
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
Solution
A = 30° and B = 60°
L.H.S.
= sin(A + B)
= sin(30° + 60°)
= sin90°
= 1
R.H.S.
= sinA cosB cosA sinB
= sin30° x cos60° + cos30° x sin60°
= `(1)/(2) xx (1)/(2) + sqrt(3)/(2) xx sqrt(3)/(2)`
= `(1)/(4) + (3)/(4)`
= `(4)/(4)`
= 1
⇒ sin(A + B) = sinA cosB + cosA sinB.
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos y, then x + y = 45° ; write true of false
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: sin2 60° + 2tan 45° – cos2 30°.