Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
उत्तर
Given that A = 30°
LHS = `(cos^3 "A" – cos 3"A")/(cos "A") + (sin^3 "A" + sin 3"A")/(sin "A")`
= `(cos^3 30° – cos3 (30°))/(cos 30°) + (sin^3 30° + sin3 (30°))/(sin 30°)`
= `((sqrt3/2)^3 – 0)/(sqrt3/2) + ((1/2)^3 + 1)/(1/2)`
= `(sqrt3/2)^2 + (9/8)/(1/2)`
= `(3)/(4) + (9)/(4)`
= `(12)/(4)`
= 3
= RHS
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
find the value of: cos2 60° + sin2 30°
find the value of: cosec2 60° - tan2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10