Advertisements
Advertisements
Question
find the value of: sin2 30° + cos2 30°+ cot2 45°
Solution
sin2 30° + cos230° + cot2 45° = `(1/2)^2 + (sqrt3/2)^2 + 1^2`
= `(1)/(4) + (3)/(4) + 1`
= 2
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
If 2 sin 2θ = `sqrt(3)` then the value of θ is
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`