Advertisements
Advertisements
рдкреНрд░рд╢реНрди
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
рдЙрддреНрддрд░
Let x be, the hypotenuse
By Pythagoras we get
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
ЁЭСе2 = 144 + 169
`x = sqrt313`
`sin theta = (AB)/(AC) = 12/sqrt313`
`cos theta = (BC)/(AC) = 13/sqrt313`
Substitute, Sin ЁЭЬГ, cos ЁЭЬГ in equation we get
`(2 sin theta cos theta)/(cos^2 theta - sin^2 theta) => (2 xx 12/sqrt313 xx 13/sqrt313)/(169/313 - 144/313)`
`= (312/313)/(25/313) = 312/25`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
Find the value of sin 45° + cos 45° + tan 45°.
Find will be the value of cos 90° + sin 90°.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.