Advertisements
Advertisements
प्रश्न
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
पर्याय
`2/3`
`1/3`
`1/2`
`3/4`
उत्तर
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to `underlinebb(1/2)`.
Explanation:
Given,
4 tanθ = 3
⇒ tanθ = `3/4` ...(i)
∴ `(4 sin theta - cos theta)/(4 sin theta + cos theta) = (4 sin theta/cos theta - 1)/(4 sin theta/cos theta + 1)` ...[Divide by cos θ in both numerator and denominator]
= `(4 tan theta - 1)/(4 tan theta + 1)` ...`[∵ tan theta = sin theta/cos theta]`
= `(4(3/4) - 1)/(4(3/4) + 1)` ...[Put the value from equation (i)]
= `(3 - 1)/(3 + 1)`
= `2/4`
= `1/2`
APPEARS IN
संबंधित प्रश्न
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Find the value of x in the following :
`sqrt3 sin x = cos x`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.