Advertisements
Advertisements
प्रश्न
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
उत्तर
We know `sec A = "ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"/"𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒"`
Consider right-angled triangle ABC
Let x be the adjacent side
By applying Pythagoras we get
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
(17)2 = 𝑥2 + 64
𝑥2 = 289 − 64
𝑥2 = 225 ⇒ 𝑥 = 15
`sin A = (AB)/(BC) = 15/17`
`cos A = (BC)/(AC) = 8/17`
`tan A = (AB)/(BC) = 15/8`
`L.H.S = (3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - 4 xx (15/17)^2)/(4xx (8/17)^2 - 3) = (3 -4 xx 225/289)/(4 xx 64/289 - 3) = (867 - 900)/(256 - 867) = (-33)/(-611) = 33/611`
`R.H.S = (3 - tan^2A)/(1 - 3tan^2 A) = (3 - (15/8)^2)/(1- 3 xx (15/8)^2) = (3 - (225)/64)/(1- 3 xx (225)/64) = ((-33)/64)/((-611)/64) = (-33)/(-611) = 33/611`
∴ LHS = RHS
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Find the value of x in the following :
`sqrt3 sin x = cos x`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.