Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
рдЙрддреНрддрд░ рез
We know that `sin theta = "opposite side"/"hypotenuse"`
Let us Consider a right-angled ΔABC
By applying Pythagorean theorem we get
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
`9 = x^2 + 4`
`x = sqrt5`
We know that = `cos = "adjacent side"/"hypotenuse"` and
`tan theta = "opposite side"/"adjacent side"`
So `cos theta = sqrt5/3`
`sec = 1/cos theta = 3/sqrt5`
`tan theta = 2/sqrt5`
`cot = 1/tan theta = sqrt5/2`
`cosec theta = 1/ sin theta = 3/2`
рдЙрддреНрддрд░ реи
Given: sin` A=2/3`……(1)
By definition
`sin A= "perpendicular"/"Hypotenuse"` …... (2)
By Comparing (1) and (2)
We get,
Perpendicular side = 2 and
Hypotenuse = 3
Therefore, by Pythagoras theorem,
`AC^2=AB^2+BC^2`
Now we substitute the value of perpendicular side (BC) and hypotenuse (AC) and get the base side (AB)
Therefore,
`3^2=AB^2+2^2`
`AB^2=3^2-2^2`
`AB^2=9-4`
`AB^2=5`
`AB=sqrt5`
Hence, Base = `sqrt5`
Now, `Cos A=" Base"/ "Hypotenuse"`
Cos A=` sqrt 5/3`
Now, `Sec 4= "Hypotenuse"/"Perpendicluar"`
Therefore,
`"Cosec" A= "Hypotenuse"/"Perpendicular"`
`"Cosec" A=3/2`
Now, `tan A="Perpendicular"/"Base"`
Therefore,
`Sec A=3/sqrt5`
Now, `tan A "Perpendicular"/"Base"`
Therefore,
`tan A= 2/sqrt5`
Now,`Cos A= "Base"/"Perendicluar"`
Therefore,
`Cot A= sqrt 5/2`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.