Advertisements
Advertisements
प्रश्न
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
उत्तर
We have
`cos theta == 5/13`
In Δ ABC
`AC^2 = AB^2 + BC^2`
`=>(13)^2 = (AB)^2 + (5)^2`
`=> 169 = (AB)^2 + 25`
`=> (AB)^2 = 169 - 25`
=> AB = 12
`:. sin theta = 12/13 and tan theta = 12/5`
Now
`(sin^2 theta - cos^2 theta) xx 1/tan^2 theta = ((12/13)^2 - (5/13)^2)/(2 xx 12/13 xx 5/13) xx 1/(12/5)^2`
`= ((144 - 25)/169)/(120/169) xx 25/144`
`= 119/120 xx 25/144`
`= (119 xx 5)/(24 xx 144) = 595/3456`
APPEARS IN
संबंधित प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A = `(7)/(25)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
From the given figure, find the values of tan C
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`