Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
рдЙрддреНрддрд░
`Cosec A = "hypotenuse"/"opposite side" = 2/1`
Let x be the adjacent side
By applying Pythagoras theorem
`AC^2 = AB^2 + BC^2`
4 = 1 + ЁЭСе2
`x^2 = 3 => x = sqrt3`
`sin A = 1/(cosec A) = 1/2`
`tan A = (AB)/(BC) = 1/sqrt3`
`cos A = (BC)/(AC) = sqrt3/2`
Substitute in equation we get
`1/tan A + sin A /(1+ cos A) = 1/(1/sqrt3) + (1/2)/(1 + sqrt3/2)`
`=> sqrt3 + (1/2)/((2 + sqrt3)/2) = sqrt3 + 1/(2 + sqrt3) = (2sqrt3 + 3 +1)/(2 + sqrt3) = (2sqrt3 + 4)/(2 + sqrt3) = (2(2 + sqrt3))/(2 + sqrt3) = 2`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
If `tan theta = 24/7`, find that sin ЁЭЬГ + cos ЁЭЬГ
Evaluate the following
cos 60° cos 45° - sin 60° тИЩ sin 45°
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Find the value of x in the following :
`sqrt3 sin x = cos x`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
Find the value of sin 45° + cos 45° + tan 45°.