Advertisements
Advertisements
प्रश्न
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
पर्याय
sec2 A
- 1
cot2 A
tan2 A
उत्तर
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to tan2 A.
Explanation:
`(1 + tan^2 "A")/(1 + cot^2 "A") = (1 + (sin^2 "A")/(cos^2 "A"))/(1 + (cos^2 "A")/(sin^2 "A")`
= `((cos^2 "A" + sin^2 "A")/(cos^2 "A"))/((sin^2 "A" + cos^2 "A")/(sin^2 "A")) = (1/cos^2 "A")/(1/sin^2 "A")`
= `sin^2 "A"/cos^2 "A" = tan^2 "A"`
∴ `(1 + tan^2 "A")/(1 + cot^2 "A") = tan^2 "A"`
संबंधित प्रश्न
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
If cos (40° + A) = sin 30°, then value of A is ______.
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
What will be the value of sin 45° + `1/sqrt(2)`?
If sec θ = `1/2`, what will be the value of cos θ?