मराठी

If cosθ=1213, show that sinθ(1-tanθ)=35156 - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`

बेरीज

उत्तर

Given: cos θ = `12/13`

To prove: sin θ (1 − tan θ) = `35/156`

Proof: we know, cos θ = `B/H`

where the right-angled triangle's base is B and its hypotenuse is H. ∠ACB = 8 is achieved by building a right triangle ABC at a right angle to B. 

AB is perpendicular, BC = 12 is base, and AC = 13 is hypotenuse. According to Pythagoras theorem, we have

AC2 = AB2 + BC2

132 = AB2 + 122

169 = AB2 + 144

169 − 144 = AB2

25 = AB2

AB = `sqrt25` = 5

sin θ = `P/H = 5/13`

So, tan θ = `P/H = 5/12`

Put the values in sin θ(1 − tanθ) to find its value,

sinθ(1 − tanθ) = `15/3 (1 - 5/12)`

= `5/13 xx 7/12 = 35/156`

Hence Proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.1 | Q 14 | पृष्ठ २४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×