Advertisements
Advertisements
प्रश्न
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
उत्तर
LHS = `tanθ/(1 - cot θ) + cot θ/(1 - tan θ)`
= `tan θ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)`
= `(tan^2θ)/(tan θ - 1) + 1/(tanθ(1 - tan θ)`
= `(tan^3θ - 1)/(tan θ(tan θ - 1))`
= `((tan θ - 1)(tan^3θ + tanθ + 1))/(tanθ(tan θ - 1))`
= `((tan^3θ + tan θ + 1))/tanθ`
= tan θ + 1 + sec
= 1 + tan θ + sec θ
= `1 + sinθ/cosθ + cosθ/sinθ`
= `1 + (sin^2θ + cos^2θ)/(sinθ cosθ)`
= `1 + 1/(sinθ cosθ)`
= 1 + sec θ cosec θ
APPEARS IN
संबंधित प्रश्न
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Find the value of x in the following :
`sqrt3 sin x = cos x`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.