हिंदी

Ln Figure, PQ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at point T. find the length of TP. - Mathematics

Advertisements
Advertisements

प्रश्न

ln Figure, PQ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at point T. find the length of TP.

योग

उत्तर

Given radius, OP = OQ = 5 cm

Length of the chord, PQ = 8 cm

OT ⊥ PQ,

∴ PM = MQ = 4 cm ......[Perpendicular draw from the centre of the circle to a chord bisect the chord]

In right ΔOPM,

OP2 = PM2 + OM2

⇒ 52 = 42 + OM2

⇒ OM2 = 25 – 16 = 9

Hence OM = 3 cm

In right ΔPTM,

PT2 = TM2 + PM2 ......(1)

∠OPT = 90°  ......[Radius is perpendicular to the tangent at the point of contact]

In right ΔOPT,

OT2 = PT2 + OP2 ......(2)

From equations (1) and (2), we get

OT2 = (TM2 + PM2) + OP2

⇒ (TM + OM)2 = (TM2 + PM2) + OP2

⇒ TM2 + OM2 + 2 × TM × OM = TM2 + PM2 + QP2

⇒ OM2 + 2 × TM × OM = PM2 + OP2 

⇒ 9 + 6TM = 16 + 25

⇒ 6TM = 32

⇒ TM = `32/6 = 16/3`

Equation(1) becomes,

PT2 = TM2 + PM2

= `(16/3)^2 + 4^2`

= `(256/9) + 16`

= `(256 + 144)/9`

= `(400/9)`

= `(20/3)^2`

PT = `20/3`

This gives `("TP")/("PO") = ("RP")/("RO")`, i.e., `("TP")/5 = 4/3` or TP = `20/3` cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 30/1/1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×