Advertisements
Advertisements
प्रश्न
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
उत्तर
Given
`(sin "A" - 2sin^2 "A")/(2cos^2 "A" - cos "A") = tan "A"`
L.H.S = `(sin "A" - 2 sin^3 "A")/(2 cos^3 "A" - cos "A")`
`= (sin "A" (1 - 2sin^2 "A"))/(cos "A" (2cos^2 "A" - 1))``
`= (sin"A"(sin^2 "A" + cos^2 "A" - 2sin^2 "A"))/(cos"A"(2cos^2"A" - sin^2 "A" - cos^2 "A"))`
`=(sin"A"(cos^2 "A" - sin^2 "A"))/(cos"A"(cos^2 "A" - sin^2 "A"))`
= `sin"A"/cos"A"`
= tan A
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
In the given figure, if sin θ = `7/13`, which angle will be θ?
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.