Advertisements
Advertisements
Question
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
Solution
Given
`(sin "A" - 2sin^2 "A")/(2cos^2 "A" - cos "A") = tan "A"`
L.H.S = `(sin "A" - 2 sin^3 "A")/(2 cos^3 "A" - cos "A")`
`= (sin "A" (1 - 2sin^2 "A"))/(cos "A" (2cos^2 "A" - 1))``
`= (sin"A"(sin^2 "A" + cos^2 "A" - 2sin^2 "A"))/(cos"A"(2cos^2"A" - sin^2 "A" - cos^2 "A"))`
`=(sin"A"(cos^2 "A" - sin^2 "A"))/(cos"A"(cos^2 "A" - sin^2 "A"))`
= `sin"A"/cos"A"`
= tan A
= R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
If sin A = `1/2`, then the value of cot A is ______.