Advertisements
Advertisements
Question
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
Solution
Given that, PR + QR = 25
PQ = 5
Let PR be x.
Therefore, QR = 25 − x
Applying Pythagoras theorem in ΔPQR, we obtain
PR2 = PQ2 + QR2
x2 = (5)2 + (25 − x)2
x2 = 25 + 625 + x2 − 50x
50x = 650
x = 13
Therefore, PR = 13 cm
QR = (25 − 13) cm
= 12 cm
sin P = `("QR")/("PR")=12/13`
cos P = `("PQ")/("PR")=5/13`
tan P = `("QR")/("PQ")=12/5`
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
In Given Figure, find tan P – cot R.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
The value of sin² 30° – cos² 30° is ______.
If cos (40° + A) = sin 30°, then value of A is ______.
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If cos A = `4/5`, then the value of tan A is ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
In the given figure, if sin θ = `7/13`, which angle will be θ?
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
(3 sin2 30° – 4 cos2 60°) is equal to ______.