English

In Given Figure, find tan P – cot R. - Mathematics

Advertisements
Advertisements

Question

 In Given Figure, find tan P – cot R.

Sum

Solution

Applying Pythagoras theorem for ΔPQR, we obtain

PR2 = PQ2 + QR2

(13 cm)2 = (12 cm)2 + QR2

169 cm2 = 144 cm2 + QR2

25 cm2 = QR2

QR = 5 cm

tan P = `("Side opposite to ∠P")/("Side adjacent to ∠P") = ("QR")/("PQ")`

= `5/12`

cot R = `("Side opposite to ∠R")/("Side adjacent to ∠R") = ("QR")/("PQ")`

= `5/12`

tan P - cot R = `5/12 - 5/12 = 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.1 [Page 181]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.1 | Q 2 | Page 181

RELATED QUESTIONS

State whether the following are true or false. Justify your answer.

cos A is the abbreviation used for the cosecant of angle A.


If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`


Evaluate the following

cos2 30° + cos2 45° + cos2 60° + cos2 90°


Evaluate the following

tan2 30° + tan2 60° + tan45°


Evaluate the following:

(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)


Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`


Evaluate the Following

`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`


Find the value of x in the following :

`2 sin  x/2 = 1`


If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.


If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.


`(sin theta)/(1 + cos theta)` is ______.


If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.


Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.


If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.


Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.


If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.


The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.


If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.


If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×