Advertisements
Advertisements
Question
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
Options
0°
30°
60°
90°
Solution
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is 90°.
Explanation:
Given,
sinα = `1/2` = sin30° ...`[∵ sin 30^circ = 1/2]`
⇒ α = 30°
And cosβ = `1/2` = cos60° ...`[∵ 60^circ = 1/2]`
⇒ β = 60°
∴ α + β = 30° + 60° = 90°
APPEARS IN
RELATED QUESTIONS
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
If sec θ = `1/2`, what will be the value of cos θ?
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.