Advertisements
Advertisements
Question
In the given figure, if sin θ = `7/13`, which angle will be θ?
Solution
Given: sin θ = `7/13`
According to the trigonometric ratios formula,
sin θ = `"Perpendicular"/"Hypotenuse"`
= `7/13`
Hence, the angle θ is ∠XZY.
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
`(sin theta)/(1 + cos theta)` is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
Find the value of sin 45° + cos 45° + tan 45°.
If sec θ = `1/2`, what will be the value of cos θ?
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.