Advertisements
Advertisements
Question
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?
Options
sin θ cot θ = cos θ
cos θ tan θ = sin θ
cosec2 θ – cot2 θ = 1
tan2 θ – sec2 θ = 1
Solution
tan2 θ – sec2 θ = 1
Explanation:
tan2 θ – sec2 θ = 1 is not true
∵ sec2 θ = 1 + tan2 θ
or sec2 θ – tan2 θ = 1
APPEARS IN
RELATED QUESTIONS
Given sec θ = `13/12`, calculate all other trigonometric ratios.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
sin (45° + θ) – cos (45° – θ) is equal to ______.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.