Advertisements
Advertisements
Question
Given sec θ = `13/12`, calculate all other trigonometric ratios.
Solution
Let ΔABC be a right-angled triangle, right angled at point B.
It is given that:
sec θ = `"hypotenuse"/"side adjacent to ∠θ" = "AC"/"AB" = 13/12`
Let AC = 13k and AB = 12k, where k is a positive integer.
Applying pythagoras theorem in Δ ABC, we obtain:
AC2 = AB2 + BC2
BC2 = AC2 - AB2
BC2 = (13k)2 - (12k)2
BC2 = 169 k2 - 144 k2
BC2 = 25k2
BC = 5k
sin θ = `("side opposite to ∠θ")/("hypotenuse") = ("BC")/("AC") = 5/13`
cos θ = `("side adjacent to ∠θ")/("hypotenuse") = ("AB")/("AC") = 12/13`
tan θ = `("side opposite to ∠θ")/("side adjacent to ∠θ") = "(BC)"/"(AB)" = 5/12`
cot θ = `("side adjacent to ∠θ")/("side opposite to ∠θ") = ("AB")/("BC") = 12/5`
cosec θ = `("hypotenuse")/("side opposite to ∠θ") = ("AC")/("BC") = 13/5`
APPEARS IN
RELATED QUESTIONS
If cot θ = `7/8`, evaluate cot2 θ.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
sin (45° + θ) – cos (45° – θ) is equal to ______.
`(sin theta)/(1 + cos theta)` is ______.
The value of the expression (sin 80° – cos 80°) is negative.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If sec θ = `1/2`, what will be the value of cos θ?
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.