Advertisements
Advertisements
Question
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.
Solution
5 cosec2 45° – 3 sin2 90° + 5 cos 0°
= `5(sqrt(2))^2 - 3(1)^2 + 5(1)`
= 10 – 3 + 5
= 12.
RELATED QUESTIONS
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
If sin A = `1/2`, then the value of cot A is ______.
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.