Advertisements
Advertisements
प्रश्न
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
उत्तर
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)` ....(i)
By trigonometric ratios we have
`tan 60^@ = sqrt3 cos 45^@ = 1/sqrt2 sec 30^@ = 2/sqrt3`
`cos 90^@ = 0 cosec 30^@ = 2 sec 60^@ = 2 cot 30^@ = sqrt3`
By substituting above values in (i), we get
`((sqrt3)^2 + 4.(1/sqrt3)^2 + 2 + [2/sqrt3]^2 + 5(0)^2)/(2 + 2sqrt2 (+ sqrt3)^2)`
`= (3 + 4. 1/2 + 3 4/3)/(4 - 3) = (3 + 2 + 4)/1 = 9`
APPEARS IN
संबंधित प्रश्न
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
If cot θ = `7/8`, evaluate cot2 θ.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
Find the value of sin 45° + cos 45° + tan 45°.