हिंदी

If sin θ + cos θ = 3, then prove that tan θ + cot θ = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1

योग

उत्तर

sin θ + cos θ = `sqrt(3)`

Squaring on both sides

(sin θ + cos θ)2 = `(sqrt(3))^2`

sin2 θ + cos2 θ + 2 sin θ cos θ = 3

1 + 2 sin θ cos θ = 3

2 sin θ cos θ = 3 – 1

2 sin θ cos θ = 2

∴ sin θ cos θ = 1

L.H.S = tan θ + cot θ

= `sin theta/cos theta + cos theta/sin theta`

= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)`

= `1/(sin theta cos theta)`

= `1/1` ......(sin θ cos θ = 1)

= 1

⇒ tan θ + cot θ = 1

L.H.S = R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Exercise 6.1 [पृष्ठ २५०]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
अध्याय 6 Trigonometry
Exercise 6.1 | Q 7. (i) | पृष्ठ २५०

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


sin2θ + sin2(90 – θ) = ?


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×