Advertisements
Advertisements
प्रश्न
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
उत्तर
LHS = `(1 + cot^2 θ/(1 + cosec θ))`
= `(1 + cosec θ + cosec^2 θ - 1)/(1 + cosec θ)`
= `(cosec θ(1 + cosec θ))/(1 + cosec θ)`
= cosec θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.