Advertisements
Advertisements
प्रश्न
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
उत्तर
LHS = `(sec A - 1)/(sec A + 1)`
= `(1/cos A - 1)/(1/cos A + 1)`
= `((1 - cos A)/cos A)/((1 + cos A)/cos A)`
= `(1 - cos A)/(1 + cos A)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
`(1 + cot^2 theta ) sin^2 theta =1`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.