Advertisements
Advertisements
प्रश्न
`(1 + cot^2 theta ) sin^2 theta =1`
उत्तर
LHS= `(1+cot^2 theta)sin^2 theta`
=`cosec^2 theta sin^2 theta (∵ cosec^2 theta - cot^2 theta =1)`
=`1/(sin ^2theta)xxsin^2 theta`
=1
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If `secθ = 25/7 ` then find tanθ.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.