हिंदी

`(1 + Cot^2 Theta ) Sin^2 Theta =1` - Mathematics

Advertisements
Advertisements

प्रश्न

`(1 + cot^2 theta ) sin^2 theta =1`

उत्तर

LHS= `(1+cot^2 theta)sin^2 theta`

      =`cosec^2 theta   sin^2 theta    (∵ cosec^2 theta - cot^2 theta =1)`

     =`1/(sin ^2theta)xxsin^2 theta`

    =1

Hence, LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 1.2

संबंधित प्रश्न

Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


If `secθ = 25/7 ` then find tanθ.


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×