Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
उत्तर
LHS = `(sec^2θ - sin^2θ)/tan^2θ`
= `(1/cos^2θ - sin^2θ)/(sin^2θ/cos^2θ)`
= `(1 - sin^2θcos^2θ)/((cos^2θ)/(sin^2θ/cos^2θ))`
= `(1 - sin^2θcos^2θ)/sin^2θ`
= `1/sin^2θ - (sin^2θcos^2θ)/(sin^2θ)`
= `cosec^2θ - cos^2θ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.