Advertisements
Advertisements
प्रश्न
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
उत्तर
We have , `(sin theta + cos theta ) = sqrt(2) cos theta`
Dividing both sides by sin θ , We get
`(sin theta)/ (sin theta )+ (cos theta)/ (sin theta)= (sqrt(2) cos theta)/ (sin theta)`
⇒ `1+ cot theta = sqrt(2) cot theta`
⇒ `sqrt(2) cot theta - cot theta =1`
⇒ `( sqrt(2) - 1 ) cot theta =1`
`⇒ cot theta = 1/ (( sqrt(2)-1))`
`⇒ cot theta = 1/((sqrt(2)-1))xx ((sqrt(2)+1))/((sqrt(2)+1))`
`⇒ cot theta = ((sqrt(2)+1))/(2-1)`
`⇒ cot theta = ((sqrt(2)+1))/1`
∴`cot theta = (sqrt (2) +1)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.