हिंदी

If `( Sin Theta + Cos Theta ) = Sqrt(2) , " Prove that " Cot Theta = ( Sqrt(2)+1)`. - Mathematics

Advertisements
Advertisements

प्रश्न

If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.

उत्तर

We have , `(sin theta + cos theta ) = sqrt(2) cos theta`

Dividing both sides by sin θ , We get 

 `(sin theta)/ (sin theta )+ (cos theta)/ (sin theta)= (sqrt(2) cos theta)/ (sin theta)`

⇒ `1+ cot theta = sqrt(2) cot theta`

       ⇒ `sqrt(2) cot theta - cot theta =1` 

⇒ `( sqrt(2) - 1 ) cot theta =1`

`⇒ cot theta = 1/ (( sqrt(2)-1))`

`⇒ cot theta = 1/((sqrt(2)-1))xx ((sqrt(2)+1))/((sqrt(2)+1))`

`⇒ cot theta = ((sqrt(2)+1))/(2-1)`

`⇒ cot theta = ((sqrt(2)+1))/1`

∴`cot theta = (sqrt (2) +1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 11

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×