हिंदी

Prove the Following Trigonometric Identities. Cos a Cosec a - Sin a Sec A)/(Cos a + Sin A) = Cosec a - Sec a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`

उत्तर

We have to prove `(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`

So,

`(cos A cosec A - sin A sec A)/(cos A + sin A) = (cos A 1/sin A - sin A 1/cos A)/(cos A + sin A)`

`= ((cos^2 A - sin^2 A)/(sin A cos A))/(cos A + sin A)`

`= (cos^2 A - sin^2 A)/(sin A cos A(cos A + sin A))`

`= ((cos A - sin A)(cos A + sin A))/(sin A cos A(cos A + sin A))`

`= (cos A - sin A)/(sin A cos A)`

`= cos A/(sin A cos A) - sin A/(sin A  cos A)``

`= 1/sin A - 1/cos A``

`= cosec A - sec A`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 63 | पृष्ठ ४६

संबंधित प्रश्न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


The value of sin2 29° + sin2 61° is


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×