Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
उत्तर
We have to prove `(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
So,
`(cos A cosec A - sin A sec A)/(cos A + sin A) = (cos A 1/sin A - sin A 1/cos A)/(cos A + sin A)`
`= ((cos^2 A - sin^2 A)/(sin A cos A))/(cos A + sin A)`
`= (cos^2 A - sin^2 A)/(sin A cos A(cos A + sin A))`
`= ((cos A - sin A)(cos A + sin A))/(sin A cos A(cos A + sin A))`
`= (cos A - sin A)/(sin A cos A)`
`= cos A/(sin A cos A) - sin A/(sin A cos A)``
`= 1/sin A - 1/cos A``
`= cosec A - sec A`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
The value of sin2 29° + sin2 61° is
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.