हिंदी

Prove the Following Trigonometric Identities. Cot Theta - Tan Theta = (2 Cos^2 Theta - 1)/(Sin Theta Cos Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`

उत्तर

 We have to prove  `cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`

We know that `sin^2 theta + cos^2 theta = 1`

So,

`cot theta - tan theta = (cos theta)/(sin theta) - (sin theta)/(cos theta)`

`= (cos^2 theta - sin^2 theta)/(sin theta cos theta)`

`= (cos^2 theta - (1 - cos^2 theta))/(sin theta cos theta)`

`= (cos^2 theta - 1 + cos^2 theta)/(sin theta cos theta)`

`= (2 cos^2 theta - 1)/(sin theta cos theta)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 23.1 | पृष्ठ ४४

संबंधित प्रश्न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


cos4 A − sin4 A is equal to ______.


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×