Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
उत्तर
We have to prove `cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cot theta - tan theta = (cos theta)/(sin theta) - (sin theta)/(cos theta)`
`= (cos^2 theta - sin^2 theta)/(sin theta cos theta)`
`= (cos^2 theta - (1 - cos^2 theta))/(sin theta cos theta)`
`= (cos^2 theta - 1 + cos^2 theta)/(sin theta cos theta)`
`= (2 cos^2 theta - 1)/(sin theta cos theta)`
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
cos4 A − sin4 A is equal to ______.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α