рд╣рд┐рдВрджреА

If 5 `Tan Theta = 4,"Write the Value Of" ((Cos Theta - Sintheta))/(( Cos Theta + Sin Theta))` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`

рдЙрддреНрддрд░

We have , 

 5 `tan theta = 4`

⇒ `tan theta = 4/5`

 Now ,

   `((cos theta - sintheta))/(( cos theta + sin theta))`

  `=(((cos theta )/(cos theta)- (sin theta )/(cos theta)))/((cos theta/ cos theta+ sin theta/ cos theta)`                             (ЁЭР╖ЁЭСЦЁЭСгЁЭСЦЁЭССЁЭСЦЁЭСЫЁЭСФ ЁЭСЫЁЭСвЁЭСЪЁЭСТЁЭСЯЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСОЁЭСЫЁЭСС ЁЭССЁЭСТЁЭСЫЁЭСЬЁЭСЪЁЭСЦЁЭСЫЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСПЁЭСж cos θ)

   `=((1- tan theta))/((1+ tan theta))`

   `= ((1/1-4/5))/((1/1+4/5))`

    `= ((1/5))/((9/5))`

    `= 1/9`

    

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 3

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 3 | Q 20

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... тИ╡ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×