Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
उत्तर
We need to prove `cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos `
Solving the L.H.S, we get
`cos A/(1 - tan A) + sin A/(1 - cot A)`
= `cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)`
`= cos A/((cos A - sin A)/cos A) + sin A/((sin A - cos A)/sin A)`
`= cos^2 A/(cos A - sin A) + (sin^2 A)/(sin A - cos A)`
`= (cos^2 A - sin^2 A)/(cos A - sin A)`
`= ((cos A + sin A)(cos A - sin A))/(cos A - sin A)` [using `a^2 - b^2 = (a + b)(a -b)`]
= cos A + sin A
= RHS
Hence proved.
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
`(1 + cot^2 theta ) sin^2 theta =1`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Show that tan4θ + tan2θ = sec4θ – sec2θ.