Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
उत्तर
We need to prove `cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos `
Solving the L.H.S, we get
`cos A/(1 - tan A) + sin A/(1 - cot A)`
= `cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)`
`= cos A/((cos A - sin A)/cos A) + sin A/((sin A - cos A)/sin A)`
`= cos^2 A/(cos A - sin A) + (sin^2 A)/(sin A - cos A)`
`= (cos^2 A - sin^2 A)/(cos A - sin A)`
`= ((cos A + sin A)(cos A - sin A))/(cos A - sin A)` [using `a^2 - b^2 = (a + b)(a -b)`]
= cos A + sin A
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If sec θ = `25/7`, then find the value of tan θ.
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
tan θ cosec2 θ – tan θ is equal to
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
sec 60° = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`